

GeoGebra Institute of Southern Connecticut

The Third Annual GeoGebra Conference of Southern Connecticut August 25, 2015 Southern Connecticut State University

8:30	Registration (Rotunda - EN A120)		
9:00	Welcome and Opening Remarks (EN A120)		
9: 15 – 10: 15	Strengthening Teacher Content Knowledge Through Sketch Construction Dr. Michael Todd Edwards – Miami University – Oxford, OH (EN A120) Building on Clement's theoretical framework for model-based learning (2000), we explore ways in which teacher understanding of various topics is strengthened through the construction of interactive applets for students. The mathematical knowledge required to build a sketch is often related, but not identical to, content understanding required to interact with the completed model. We explore these differences through the analysis of several sample sketches.		
10:15 - 10:30		Coffee Break (EN B121)	
10:30 - 10:45	POSTER SESSION Interactive posters will be available all day. Y P1: Reimann's Sums - Rasha Tarek - Greenwich P2: Exploring the laws of Sines and Cosines in a P P3: The Ambiguous Case- Rasha Tarek - Greenw P4: Varignon's theorem - Sandra Ollerhead - Ma P5: Completing the squares - Brian Darrow, Jr P6: The Ferris Wheel- Rasha Tarek - Greenwich P7: Taylor Polynomial Exploration - Dr. Len Brin P8: Level curves - Dr. Braxton Carrigan - SCSU P9: Special lines in a triangle - Dr. Marie Nabbon P10: Sierpinski's Gasket - Dr. Len Brin - SCSU/C P11: Pythagorean Identities - Dr. Albert Navetta P12: Shikaku Puzzle - Alex Briasco - Brin - Free	(EN D124) <i>You can browse them at any time.</i> HS, CT Pre-Calc class – Dr. Jason Hardin – Worcester State Un yich HS, CT ansfield High School, MA Southern Connecticut State University, CT HS, CT - SCSU/GISCT, CT /GISCT, CT at- SCSU/GISCT, CT SISCT, CT - UNH, CT port Middle School, ME	iversity, MA
10:50 - 11:20	PRESENTATION A1: (TBA) Using GeoGebra to present kinetic data and ligand binding data to a Biochemistry Class. Dr. George Dombi - University of Rhode Island, RI & Dr. John Golden - Grand Valley State University, MI There are two hyperbolic functions commonly presented in Biochemistry classes. Both of these functions, the Michaelis-Menten enzyme activity curve and the Scatchard ligand binding isotherm are routinely re-expressed using a linear transform in order to determine the rate and binding constants inherent in each model. We will demonstrate how these transforms, when presented in Geogebra, make a useful and interactive teaching tool. For the function of the section		Poster S
11:25 - 12:55	Initiation Workshop to GeoGebra (TBA) FOR BEGINNERS Dr. James Quinlan – University of New England, ME Participants will interact with the basic tools and menus of GeoGebra. No pre-requisite knowledge is required.	Tips and tricks with GeoGebra (TBA) FOR ADVANCED USERS Dr. Marie Nabbout - SCSU & GISCT, CT Dr. Len Brin - SCSU & GISCT, CT Participants will learn how to create buttons, add input bars, modify appearance, create new tools, use interactive spreadsheets and more	ession
1:00 - 1:45	Lunch - EN B121		
1:45 – 2:00	(PRECENTATION A 2. (TPA)	Group Picture (TBA)	
2:05 - 2:35	PRESENTATION A2: (1BA) An informal approach to linear Least Squares. Dr. James Quinlan - University of New England - ME Modeling data using the least squares method is used extensively in practice, therefore an essential contemporary topic for students of data science. During the presentation, a GeoGebra applet will be developed that can be used to facilitate understanding of the objective and the underlying mathematics of the least squares method. Additionally, two of the most robust and valuable GeoGebra topics/commands will be highlighted in the applet, in particular Lists and Sequences.		Poster Session

	PRESENTATION A3. (TRA)	
2:40 - 3:10	Graphing solids of revolution in GeoGebra Dr. Douglas Hoffman - Northwestern CT Community College - CT	
	The goal of this presentation is to learn how to plot surfaces in GeoGebra. Surfaces can be graphed using either the Surface command, inputting a function of two variables or inputting an equation of at most three	
	variables. Some surfaces can easily graphed using a function of two variables or an equation, but we have	
	encountered in Calculus I/II. We see a solid of revolution can be graphed in GeoGebra provided we can	
	parameterize the circular cross section. And with a little work, we can extend our method of graphing a solid	
	be used to model certain objects in GeoGebra, like a Hershey's Kiss, and use GeoGebra to evaluate the	
	integral calculating the volume of the object.	
	SHORT PRESENTATIONS (TBA)	
3:15 - 4:15	* B1: Measures of Center	
	Dr. Forest Fisher – Guttman Community College, NY	
	Using GeoGebra to help students make sense of the mean and median as measures of center. The	
	activity is designed according to APOS theory with the goal of developing an <i>object</i> understanding	
	of the mean and median. In particular, students work with a dot plot in GeoGebra, and drag the	Pc
	dots around to dynamically manipulate the mean and median.	ost
	* B2: Investigating Parametric Equations on GeoGebra	
	Christa L. Fratto - Greens Farms Academy, CI	Se
	This session will focus on using GeoGebra to develop an understanding of parametric functions.	SS
	and spreadsheets. We will then use GeoGebra to model the motion of a swing	ion
	* B3: Polar Curves using Parametric Equations	-
	Rasha Tarek - Greenwich High School, CT	
	This presentation will show how to use GeoGebra to investigate the connection between polar and	
	rectangular equations with ease and learn how to utilize parametric equations to create some amazing polar	
	curves.	
	* B4: Z-scores	
	Dr. Audrey Nasar - Guttman Community College, NY	
	The presentation will show how to use GeoGebra to introduce z-scores as linear functions. This approach	
	aims to help students make the connection between the normal distribution and the Cartesian plane in efforts	
	to better understand relative standing and build upon students prior knowledge of linear functions. By visualizing the linear functions for a variety of normal distributions, students can interpret the domain	
	range and x-intercents in a dunamic environment	
	* B5: Creating Transformations in GeoGebra	
	Dr. Adam Goldberg- SCSU. CT	
	The presentation will show how to create and use transformations with GeoGebra, starting with basic	
	transformations such as rotations, reflections, and translations and moving to more advanced ones such as	
	glide reflections and dilations.	
4.15 4.30	Evaluation and Attendance Certificates	
4.15 - 4.50	EN B121	

PROGRAM ORGANIZERS: Dr. Marie Nabbout & Dr. Len Brin

PROCEEDINGS REVIEW COMMITTEE:

Dr. Len Brin, Math Department - SCSU, CT

Dr. Marie Nabbout, Math Department - SCSU, CT

Dr. Braxton Carrigan, Math Department - SCSU, CT

Dr. Todd Edwards, Teacher Education Department - Miami University, OH

Dr. Todd Ryder, Chemistry Department – SCSU, CT

Dr. JiongDong Pang, Chemistry Department - SCSU, CT

Dr. Terri Bennett, Math Department - SCSU, CT

FOR REGISTRATION: http://www.southernct.edu/gisct/events