ABSTRACT

Author:	Jennifer Moses Arulraj Moses
Title:	Characterization of the Adsorptive Properties of Biochar for Direct Air Capture of CO2
Thesis Advisor:	Ericka C. Barnes
Department:	Department of Chemistry and Biochemistry
Year:	2023

An effective strategy to address the climate change is to utilize Direct Air Capture (DAC) technology for seizing the legacy atmospheric CO2. The level of effectiveness depends on the selection of a suitable CO2 adsorbent that can accommodate more CO2 on its surface while consuming less energy. Organically derived biochar, a promising sustainable adsorbent, was evaluated experimentally for its innate pore structure and surface area using Brunauer–Emmett–Teller (BET) surface area analysis and its amorphous structure using powder x-ray diffraction (PXRD). Graphene served as a chemically similar substitute in quantum chemical Density Functional Theory (DFT) calculations for biochar, whose structure differs based on the source. Austin-Frisch-Petersson Functional with Dispersion (APFD) hybrid functional coupled with 3- $21+g^*$, 6-31+G(d,p) and 6-311+G(2d,p) basis sets were employed to optimize and to calculate frequency for CO2 and finite graphene sheets in Gaussian '16; quantum confinement and hydrogen-termination effects were investigated, and the adsorption energy was also estimated.